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1 Introduction

This report is concerned with optimal space-time adaptive processing (STAP) in environments
which cannot support fully-adaptive processing due to either size, weight, and power restrictions or
sample support limitations. Typical sensor platforms which exhibit such restrictions include those
that operate in airborne, space-segment, and undersea environments. The primary difficulty in
STAP is that the dimension of the adaptive weight vector, which equals the product of the number
of antenna elements and the number of Doppler bins, becomes large. Both the required sample
support for STAP detection and the computational complexity of the algorithms, which update
this weight vector, increase in proportion to the dimension of the weight vector. When the data
from auxillary range gates are used for interference and clutter estimates, the required large sample
support necessitates the use of range gates which are relatively far from the range gate of interest.
These distant range gates may not preserve the homogeneity of the clutter and may not provide
good estimates of the interference near the range gate of interest, thereby resulting in degraded
performance.

Thus, real-time STAP implementations need a lower rank processor to be realizable from a com-
‘putational viewpoint. A dilemma is encountered when the optimal steady-state solution requires
a larger number of weights than the platform can support. In this report a general methodology
is developed which reduces the dimensionality of the weight vector for target detection without
adversely affecting the steady-state solution.

The optimal weight vector for adaptive signal detection takes the form of a linearly constrained
Wiener filter [1, 2, 3, 4, 5, 6, 7], where the constraint is in angle and Doppler. It is noted that

this linear constraint is not the same as the popular minimum-variance, distortionless-response



(MVDR) constraint for wideband arrays [8]. At first glance the form of the constrained Wiener
filter for STAP and target detection does not provide much insight to the rank-reduction‘problem.
As a consequence there is no clear Amethodology for finding the conditions needed to optimize a
partially adaptive STAP system.

The most effective previously proposed reduced-rank solutioﬁs to the STAP problem require
an eigendecomposition of the a,rra,y covariance matrix or its estimate [9, 10, 11, 12, 13, 14, 15].
These methods are based on the principal component approximation of a covariance matrix [16,
17]. One goal of approximating the covariance matrix with a low-rank estimate is to simplify
the weight update algorithm. Notably, the weight vector obtained by reducing the rank of the
covariance matrix through the use of the principal components technique has full dimension [12,
13, 14, 15]. Finally, the principal component approach requires that the dimension vof the noise
subspace eigenstructure be known precisely. This dimension corresponds to the true rank of the
interference-plus-clutter covariance matrix. Since this rank is never known a priori, it must be
estimated. The penalty for underestimating the rank of this total noise contribution can be great;
the detection performance degrades rapidly as the rank of the detector is decreased below the
dimension of the noise subspace eigenstructure.

In this report a new method is introduced to achieve a reduced-rank array processor using
what is-called a cross-spectral metric. This metric was introduced recently for narrowband MVDR
processors and least squares adaptive filters [18, 19]. For these cases the cross-spectral metric is
shown to provide an upper-bound on the minimum mean-square error performance obtainable by
all other eigen-based techniques. In this report the use of the cross-spectral metric is extended
to STAP for target detection. It is shown that this metric also maximizes the output signal-to-

interference plus noise ratio (SINR) [6, 20], thereby optimizing the weight vector for signal detection
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Figure 1: The Optimal Joint Gaussian Detector.

under the joint Gaussian assumption [3].

The optimal processor is partitioned by means of a unitary operator which results in a structure
called the generalized sidelobe canceller (GSC) [2, 21]. The GSC processor results in both a lower
dimensional weight vector and an unconstrained optimal filter. The GSC is the canonical processor
for signal detection, and it is by means of this sidelobe canceller interpretation that the process of
rank reduction is motivafed. Since the cross-spectral metric results in the analytical optimization
of the SINR as a function of the weight vector dimension, a reduced-rank weight vector is obtained
which best preserves the steady-state performance.

The optimal processor for detection under the joint Gaussian assumption is interpreted as
consisting of two systems in cascade, as depicted in Figure 1. The first system is a noise field
estimator which utilizes the constra.ined’Wiener filter. This estimation system produces the best
estimate of the test cell with which the presence or absence of a target is to be determined. The
second system consists of a hypothesis testing mechanism which implements the detection criterion.
The input to the optimal processor is the observed radar return, and the output is a decision D;
with respect to target presence (D; = 1) or absence (D; = 0). With this interpretation of the
optimal detector, the process of partial adaptivity belongs within the first system, and results in

reduced-rank estimation.



The space-time adaptive processing framework is developed in Sect. 2. In Sect. 3 the detection
criterion termed an AMF CFAR test ié reviewed with a known covariance in terms of the standard
direct-form detector. The equivalent full-rank GSC detector is derived in Sect. 4. The GSC form
processor is utilized next in Sect. 5 to derive a new reduced-rank GSC AMF CFAR detector which
uses the cross-spectral metric. Here it is demonstrated that the cross-spectral metric maximizes
the output SINR as a function of the rank of the processor. The statistics of the reduced-rank
AMF CFAR test with known and unknown covariance ‘are derived in Sect. 6. An example of
the performance of partially adaptive STAP for target dete;:tion is presented in Sect. 7, and the

conclusions are provided in Sect. 8.
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Figure 2: 3-dimensional CPI data cube.

2 Space-Time Adaptive Processing

Radar returns are collected in a coherent processing interval (CPI), which may be represented as
the 3-D data cube shown in Figure 2. The data is then processed at one range of interest, which
corresponds to a slice of the CPI data cube. This slice is a J x K space-time snapshot, denoted by

X. This space-time snapshot can be expressed also as the matrix

To0 Zo1 o Tox-
Z1,0 Tip 0 Tk
Tj-10 Ty-1n - Ty_1 k-1

where the individual elements z;, correspond to the data from the j-th pulse repetition interval
(PRI) and the k-th sensor element {3, 22].

The 2-D space-time data structure consists of element space information and PRI space-Doppler
information. If a target is present in the range gate of interest, then the return X is composed of

components due to the target, the interference sources or jammers, clutter, and white noise:
X = X+ Xi + X, + X (2)

If no target is present, then the snapshot consists only of interference, clutter and white noise. The

white noise in the space-time snapshot is the thermal noise present at the sensor elements, which



is both spatially and temporally white. Each of the other components of the radar return are now
addressed.
The target is assumed to approximate a point target, present in only one range gate. The J x K

space-time snapshot corresponding to the target is then given by
X, = ayb(w;)af (9,), (3)

where a(¥;) is the K x 1 spatial steering vector in the direction provided by the target spatial
frequency ¥;, b(w;) is the J x 1 temporal steering vector at the target Doppler frequency w;, and
ay is the amplitude of the target. The target data is then stacked column-wise to form the KJ x 1

target vector

x; = a;b(wy) ® a(dy), (4)

where (-) ® (-) represents the Kronecker tensor product operator.
The interference environment consists of several sources which are assumed temporally to be
white (barrage jammers spread over all Doppler frequencies at a particular azimuth). The J x K

space-time snapshot corresponding to the jammers is given by
X; = a; AT (W), (5)

where a; is the J x I matrix of jammer amplitudes for the J PRI’s of each of the [ interference
sources and A(9;) is the K x I matrix whose i-th row is the spatial steering vector for ’che i-th
interference source with spatial frequency 9;. The interference data is stacked column-wise to form
the KJ x 1 interference vector x;.

The clutter returns are assumed to come from all areas within a common range gate in a

direction towards which the antenna is directed. Consider returns from a circular ring about the




platform. If each spot within a clutter ring is a point-like reflector, its space-time snapshot takes

the form,

X, = acb(w, )aH(ﬂcp), (6)

where 9., and w,, are the spatial and Doppler frequencies of the clutter return from the p-th patch,
and a., is the power from the p-th clutter patch. If the clutter is assumed to be locally stationary,
it has a velocity relative to the radar platform which is determined by the azimuth angle between
the array and the clutter patch. Finally, if the clutter returns are assumed to come from this clutter
ring which is divided into a large number D of evenly spaced sectors and summed, the total return

from the clutter has the form,
& H
Xe= Z e, b(8Y.,)a (ﬂcp)’ (7)
¢‘0p=1
where f is the constant of linearity between the spatial and Doppler frequencies. The spatial

frequency is given by

d,, = —;— cos . sin ¢, (8)

o

Cp
with d, A,, and 6. being the element spacing, wavelength, and fixed elevation angle, respectively.

The clutter data is then stacked column-wise to form the KJ x 1 vector x,.

The total input noise vector n is given by
n=x;+ X+ Xy. (9)
The input noise covariance matrix is then defined to be

R=E nnf]. (10)



3 The AMF CFAR Test with Known Covariance

Radar detection is a binary hypothesis problem, where hypothesis H; corresponds to target presence
and hypothesis Hy corresponds to target absence. Each of the components of the space-time
snapshot vector x are assumed to be independent, complex, multivariate Gaussian. This snapshot,
for each of the two hypothesis, is of the form,

Hy: x=n,
Hi: x=x;+n. (1)

The KJ x 1-dimensional space-time steering vector v(d;,w;) is defined as follows:
v(9:,wi) = b(wr) ® a(dy), (12)

where b(w;) and a(?;) are introduced in‘(3). For convenience in the analysis to follow, the normal-

ized steering vector in the space-time look-direction is defined to be

s = v(dy, wi)
V(9000 (Br, w4)

The normalized target gain « is then given by

(13)

a= at\/vH(ﬁt,wt)v(ﬂt,wt), (14)>

where the original target gain oy is introduced in (3). The two hypothesis in (11) may now be

written in the form

Hy : X =1,
Hy: x=as+n, (15)
where o = |a|e’® is a complex gain whose random phase ¢ is uniformly distributed between 0

and 27. The random vector x, when conditioned on ¢, is Gaussian under both hypotheses. The

conditional probability densities of x are

f-"|H1 :¢(x) = 'p(‘jl‘lmﬂe—(x—o‘s)HR_l (X—as)’

(16)
foime,6(%) = 7rz\+|m“€ ’




where || (-) || is the determinant operator. The likelihood ratio test then takes the form,

a < () _ 3 7 e o)

e - T < 777 (17)
fIlHo(x) '217f02 leHo,¢(x)d¢ Hy
where 7 is some threshold. Using the densities in (16), the test in (17) becomes
2gHR -1 Hl
A =1, (20o[s"Rx|) e FIRTS 2y (18)

Hy

where I, (-) is the modified Bessel function of the first kind. The noise covariance matrix R is
nonnegative definite and the modified Bessel function is monotonically increasing in its argument.
Therefore, the test in (18) reduces to

H 2 ]il
A1 = IS R_1X| < M, (19)
Ho

where the new threshold 7, is related to the previous threshold 5 as follows:

-1 e|a|2sHR—ls 2
= [Io (77 )J . (20)

2|al

The test in (19) was the STAP detection criterion, developed in the well known papers by Brennan
and Reed [3] and Reed, Mallett and Brennan (RMB) [4]. The RMB test takes the form of a matched
filter for incoherent detection and is a Bayes optimal test which is maximally invariant with respect
to the group of phase shifts. However, as noted by Kelly [23], no predetermined threshold can be
set to achieve a specified false alarm probability since the detector is designed to operate in an
unknown interference environment.

The RMB test in (19) can be modified to have a constant false alarm rate (CFAR) property
via a normalization by the output power. This new test, derived independently in [24] and [25], is

termed an adaptive matched filter (AMF). The AMF CFAR test takes the form,

A |sHR‘1x|2 Iil
2= AR I?om, (21)

11



and is an optimum group invariant hypothesis test with respect to the change-of-scale and the

initial target phase groups. The probability of detection for the AMF CFAR test A; is given by

[24]

Pp= i(ﬁn;_g)Q(n+1,nz), : (22)

n=0

where £ is the output signal-to-interference plus noise ratio, Q (+) is the incomplete gamma function,

and the threshold 7 is found from the false alarm probability:

Pra=Q(1L,m)=¢™. | (23)

The RMB and AMF CFAR tests may be interpreted as functions of an optimal weight vector

Wsmr [4], which is obtained by an unconstrained optimization of the SINR as follows:
Wsing = kR_lS, (24)

where k is some arbitrary complex constant. The constrained optimization implemented by the
sidelobe canceller form, which is introduced in the next section, fixes the value of k to provide a
normalization by the output power. The weight vector in (24) is now considered using a constrained
optimization for target detection under the joint Gaussian assumption. The optimal constrained
wéight vector for maximizing the output SINR, while maintaining a normalized response in the

targét spatio-Doppler look-direction, was originally given in [2] as follows:

_ Rls
WsINR — SHR-1g (25)
The output y formed by applying this latter weight vector to the primary data is
Hp-1
s"R™'x
Y= WennX = THR-14° (26)
and the resulting output SINR is
|of? |o)? 2 Hp-1
= = - (¢ 8 R s, 27
¢ P wH Rwsns o (27)

12
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Figure 3: The direct-form processor.

where |a|? is the output power due to the target signal under hypothesis H; and

1

P=——
sHR-1g

(28)

is the output noise power of the processor. The weight vector in (25) is the result of a constrained
optimization in which a beam is placed in that spatial and Doppler look-direction which is given
by the steering vector s. This direct-form processor is depicted in Figure 3.

The RMB test in (19) may now be expressed in the form

H 2 9|yl f£1
A= (S R_ls) |y[ = l—ﬁ <z M (29)
Hy

which demonstrates that the RMB detector compares a threshold 7; with the ratio of the output
power to the square of the noise output power. The normalized AMF test in (21) may similarly be

written in the form,
_ El
Ay = (SHR 15) ly|> = B z N2, (30)
where the threshold 7, is now compared with the ratio of the output power to the noise output

power.

13



An equivalent new AMF CFAR detector is now developed which is characterized by a sidelobe
canceller form. This sidelobe canceller form is used next to reduce the dimension of the weight
vector Wy, which maximizes the output SINR and the probability of detection under the joint
Gaussian assumption. The goal of this data reduction step is to obtain a reduced-dimensional test
criterion which yields decisions which correspond with the full-dimensional AMF CFAR test in

(21).

14




4 The GSC Form Processor

The direct-form STAP processor described in Sect. 3 is now transformed into the generalized
sidelobe canceller (GSC) form. The GSC processor results in an unconstrained weight vector
and reformulates the STAP detector structure into the form of a standard Wiener filter. This GSC
form of the detector provides a deeper insight to the rank-reduction problem than appears to be
possible otherwise.

Consider now using a unitary KJ X KJ matrix operator T to transform the data prior to
adaptive detection. ’I‘he unitary nature of this matrix conserves power, so that the resulting output
SINR is seen to be identical to the original direct-form detection processor. The structure of this
‘operator is partitioned as follows:

H
T = [ B ] : (31)
where the K'J x 1-dimensional conventional space-time beamfbrmer s is defined in (13) and B is
the full-row rank N x KJ signal blocking matrix which maps x onto the null-space of s, where
N = (KJ —1). Hence,

Bs =0, (32)

so that the matrix B effectively blocks any signal coming from the spatio-Doppler look-direction.
Any full row-rank matrix B that satisfies (32) and results in an invertible T is a valid signal
blocking matrix. The Gram-Schmidt algorithm may be applied then to this matrix to generate
an orthonormal B and a unitary T. Two algorithms for directly finding an orthonormal B, using
the singular value decomposition (SVD) and the QR decomposition, respectively, are described in
Appendix A. |

The transformation of the radar return x by the operator T in (31) yields a vector X which has

15



the form
. , sHx d v

where the scalar-valued beamformed output is denoted by d. Here also the N-dimensional vector
b is termed the noise subspace data vector. It is seen now that the transformed data vector X has

an associated covariance matrix Rz which takes the form:

R, = TRTH = | % T |, (34)
“ ryg R '

The N x N noise subspace covariance matrix Ry is expressed by

R, = E[bb?] = BRB”. (35)

The N x 1 cross-correlation vector between the noise subspace data vector and the beamformer

output is given by

rpd — E[bd*] = BRS, (36)
where * represents the complex conjugate operator. The scalar o3 in (34) is computed to be
0% = sfRs, (37)

and represents the variance of the conventional beamformer output.
Next let T operate on the steering vector s. This operation yields the unit transformed, steering

vector ey, given by

1
0
e = Ts = . . (38)
0
Then the optimal weight vector in these transformed coordinates is given by
Rglel 1 .
s¢c = Feo ’ 39
Wy e{IRg,el l: —-W ] ( )
16
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Figure 4: The full-rank GSC processor.

where Ry is the covariance matrix in (34). The partitioning of the matrix operator T leads naturally
to the form of the GSC array processor depicted in Figure 4 [2, 7, 21]. This processor results in a
fixed weight of unity for the upper branch and an adaptive weight vector w of dimension N = KJ -1
in the lower branch. The vector w in (39) is provided by the Wiener solution corresponding to the
filter depicted in Figure 4:

W = Rb_lrbd, ’ (40)

where Ry, and rpq are computed in (35) and (36), respectively. The GSC form processor implements
the K J-dimensional weight vector in (39) using the partitioning defined in (33). The steady-state
performance of the GSC and the direct-form processor are identical, but the adaptive weight vector
w in the GSC is of a lower dimension. Hence, the computational requirements for updating this

weight vector are reduced and the GSC form therefore can be considered canonical.

17



The output of the arrays, utilizing the weight vectors described in (25) and (39), are identical

and, using (33) and (39), may be expressed as follows:

y=wl x=wlx= (SH——WHB) X. (41)

gsc

The output noise power is found by a substitution of (40) into (41) and the evaluation of the

mean-square value of y using (28) as follows:

— 1 —
T gHR-1s

P 03 - rf{iR;lrbd. (42)

The definitions of the filters s and B imply that the output SINR may be written by (27) in a more

illuminating form as follows:
|o?

. 43
02— rﬁRglrbd (43)

The observation data covariance matrix Ry is expressed now in terms of its eigenvectors and

eigenvalues as follows:
R; = UAUH, (44)
where U is a unitary N x N matrix composed of the eigenvectors {V;}Y, and A is the diagonal ma-

trix of associated eigenvalues {\;})¥,. The noise process b, defined implicitly in (33) is transformed

to a principal coordinate process p as follows:
p = Ufb. (45)

A normal component covariance matrix R, cross-correlation vector rpq, and Wiener filter wy are

defined now as follows:

R, = E[pp”]=U"R,U = 4, (46)
r,e = E[pd]=U"ry, (47)
wy = R;'r=Uw. (48)

18




Figure 5: The full-rank GSC processor in principal coordinates.

The GSC in these normal coordinates, depicted in Figure 5, is equivalent to the GSC in Figure 4

in terms of its steady-state characteristics. The array output of the GSC in normal coordinates is

given by

y = (sH—wvaUHB>x: (SH—WHB) X. (49)

Note that the output noise power,

P = 0'C2l - I'ZI;‘[jR;lrpd = 03 - rgRglrbda (50)
and that the SINR,
K of?

2 Hp-1 T 42 Hp-1 ’
Ud—rdep rpg 05— TRy g

are conserved by any unitary transformation, including that realized by the operator U.

19



5 Partially Adaptive STAP and the Cross-Spectral Metric

We now derive the cross-spectral metric for optimal subspace selection and rank reduction in -
partially adaptive STAP. The problem of reducing the degrees of freedom for an array processor
involves selecting a subset or some combination of the elements to be adaptively weighted. For
notational purposes, let the space spanned by the columns of the fully adaptive array covariance
matrix be denoted by €V, implying that the observation covariance matrices Ry and R, are of
dimension N x N and the vectors rpq, Ipd, W, and wy are N x 1-dimensional vectors. The partially
adaptive GSC shown in Figure 6 utilizes an N x M transformation operator U, in place of U in

Figure 5, to form the M-dimensional reduced-rank observation data vector,
z =UD, (52)
where M < N. The associated M x M reduced-rank covariance matrix is given by
R, = UTRU = Ay, , (53)

where A, is the diagonal matrix composed of the M eigenvalues corresponding to the eigenvectors
to be selected which form U. The cross-correlation between the process z and the desired signal d
is given by

r,g = E[zd"] = U ry,. » (54)
The data Vegtor z is then processed by the reduced-rank weight vector w,, which is of dimension

M x 1. From Wiener filter theory this weight vector is expressed finally by
Wi = Rz_lrzd = A;}LlHrbd. \ (55)

The most popular technique for subspace selection is based on the principal components method

9, ‘11, 12, 13, 14]. This method determines the singular value decomposition of the N x N-

20




dimensional covariance matrix Ry and selects the M largest eigenvectors (those corresponding to
the largest eigenvalues) to form the M-dimensional eigen-subspace ¥ C CV in which the adaptive
processbr operates. However, this technique does not directly consider the maximum output SINR
performance measure to maximize the probability of detection, which is a function of not only
the space spanned by the noise covariance matrix Ry but also of the cross-correlation between the
desired signal d and the noise process b.

The derivation in [18] is now used to reduce the rank of the Wiener filter in a manner which
maximizes the output SINR. To accomplish this a rank reducing N x M transformation matrix U,
which is composed of some M columns from U , needs to be selected (see Figure 6). The operz;tor
U is constrained therefore to be a subset of M of the N possible eigenvectors of R,. This particular
constraint allows a direct comparison with the principal component technique, which chooses the
rank reducing transform to be composed of those M eigenvectors which correspond to the largest M
eigenvalues. Thus, the particular problem at hand is to choose the subspace spanned by a set of M
eigenvectors out of the N available such that the resulting M-dimensional Wiener filter yields the
largest output SINR out of all (1\]\2) possible combinations of eigenvectors. The subspace spanned
by the columns of the optimal reduced-rank covariance matrix which achieves this maximization
of the output SINR as a function of filter rank is denoted by 2 c ¢%.

‘Now denote the reduced-rank processor output by y,. This is illustrated in Figure 6. A study of

Figures 5 and 6 suggest that the reduced-rank processor output may be expressed by the relation,

=1, wiU" - wit] [i] (56)

Denote the weight error vector between the full-rank weight vector and its reduced-rank version by
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Figure 6: The reduced-rank GSC processor.

By (50) the output noise power for the reduced-rank processor is now computed in this notation

to be

P, = 03—t R 'rpa + e Rye 2> P, (58)

and the reduced-rank SINR is expressed as

[o®

-1
03 —rpaRp Tpg + eHRe

<¢. (59)

érz

Note that the target signal power is not affected by rank reduction; the rank reduction is only a
function of the noise field estimation. A comparison of (50) with (58) or (51) with (59), shows that
it is desirable to choose the rank reducing operator U in a manner that minimizes the additional

mean-square error incurred by the rank reduction. Define the N x M subspace index matrix J,

given by

J=vu. (60)
This matrix is composed of N orthonormal unit vectors and N-M null vectors in an order which
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corresponds with the selection of the M columns of U that were retained to form the rank reducing
operator Y. Now, one wants to minimize the scalar term e Rye which appears in (58) and (59)

as follows:
min [EHRI,&‘] = min [(ng})/z - wﬂR}IﬂJH) (Rzl,/2wN - JR;/2WM)] . (61)
Thus evidently the best solution for (61) is to choose that set of M rows of U for the M x N matrix

U such that JR;/ 2w is the best low rank approximation to the vector Rzl,/ ‘W

The Wiener-Hopf relationship for the full-rank case is given by
Rpr = rpd- (62)
A multiplication of both sides of (62) by R, /2 51 the left yields the following relationships:

R;/2WN = R;l/2rpd = Aul/ZUHrbd

V] Tpa

Vi1

H
vz Tpgd

= | V& | (63)

H
erbd

[ Vv

Hence in order to make the vector J Ri/ W be the best low rank approximation to the vector
R;/ 2WN, it is necessary to rank order the terms in (63) by their magnitude. With this ranking of

the eigenvectors which compose the matrix U, the index matrix J takes the form

I
where I is the M X M identity matrix and 0 is the (N — M) x M null matrix. Then the rank

reducing operator U is selected by choosing those M eigenvectors of U which correspond with the

largest M values of the sequence of non-negative terms

2

H
Vi rpa , (65)

Vi
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fori=1,2,...N. Note that the metric in (65) measures the cross-spectral energy projected along
the ¢-th eigenvector. With this selection, the columns of the reduced-rank covariance matrix R,
span the M-dimensional cross-spectral subspace 2 C ¢" to provide the largest output SINR of
any M-dimensional subspace which is spanned by M of the N columns of U.

Clearly, the subspace £2 spanned by the columns of eigenvectors corresponding with the M
largest values of the cross-spectral metric is not the same as the subspace ¥ spanned by the
eigenvectors corresponding with the M largest eigenvalues for all values of M. This means that ;che
Wiener filter in the cross-spectral subspace 2 yields an output SINR which is always larger than or
equal to that provided by the Wiener filter in the subspace ¥. We conclude that the reduced-rank
Wiener filter found via the cross-spectral metric maximizes the output SINR as a function of the
rank of the filter for the eigenvector basis. Thus the cross-spectral metric results in an upper-bound
on the performance of eigen-based rank reduction techniques.

To demonstrate that the cross-spectral metric is optimal for each rank M < N, we consider
the decomposition of the SINR performed by the full-rank matrix of eigenvectors U. The output

SINR of the full-rank processor, from (46) and (51), can be expressed as

s (66)
= .
Vit
The optimal reduced-rank SINR is expressed as
|o?
& = 2 - (67)
lVfrbd
Oq — Z]GQ Aj

Finally, a comparison of the decision rule in (65) with the expressions in (66) and (67) demonstrate
that the cross-spectral metric maximizes the output SINR as a function of the rank of the weight

vector.
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6 The Reduced-Rank AMF CFAR Test with Known and Un-
known Convariance

The AMF CFAR test in (21) is defined in terms of the output signal y and the output noise power
P of the direct form processor. The GSC is then derived as the canonical form of this optimal
array processor in Sect. 4, where it is also demonstrated that the GSC yields an output signal and
SINR which are equivalent with that provided by the direct-form processor.

An optimal reduced-rank STAP design technique is derived in Sect. 5, where the GSC form
processor was utilized. It is also shown in Séct. 5 that the target signal power is not affected
by rank reduction. Thus, as mentioned in Sect. 1, the process of rank reduction for partially
adaptive STAP belongs within the noise field estimation system shown in Figure 1. The cross-
spectral metric provides an upper-bound on the output SINR achievable by reduced-rank detectors
using an eigenvector basis. This fact explains why the cross-spectral metric proVides a capability
to achieve reduction in the rank of the weight vector below the dimension of the noise subspace
eigenstructure without a significant loss in performance. The cross-spectral metric given in (65)
provides the best set of the possible (A]\,;) eigenvectors of the noise subspace covariance matrix to
selec‘p for rank reduction. These optimal eigenvectors are then used by the hypothesis testing
mechanism to determine target presence or absence. A new optimal reduced-rank AMF CFAR test
is now formally defined and analyzed.

For convenience, we now rewrite the AMF CFAR test in (30) as follows:

‘SHR_1X|2 ly]? I£1

Ay = = = )
2 sHR-1g P Eo 2

(68)

The reduced-rank array output y,, derived in (56) and depicted in Figure 6, is written now in the
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form,

Yr = (sH - wguHB) x=d—wlz=d-rIR; 2. (69)

Also the reduced-rank output noise power P, in (58) may be expressed by
P, =0} —rER]'r,,, (70)
where the covariance matrix R, and the cross-correlation vector r,q were defined in (53) and (54),

respectively. In terms of the expressions in (69) and (70), a new optimal reduced-rank version of

the AMF CFAR test is obtained as follows:

e
A2r = < 2 (71)
P,
" Hg

where the reduced-rank SINR is given by

¢ = lol” (72)

1 .
0'3 ~ TRz T

The probability of detection of this new reduced-rank AMF test in (71) is modified to

P, =3 (S5 o 1m, (73

n=0

and the probability of false alarm retains the form,
Pry=Q(1,m)=e™. (74)

Note that the expressions in (69), (70), (71), (72), (73) and (74) are valid for any unitary operator
used for rank reduction with a subspace selection rule which chooses M of the-V columns of the
unitary operator. This includes, but is not limited to the reduced-rank principal component and
cross-spectral AMF CFAR tests, which use the unitary matrix composed of the eigenvectors of Ry.

The reduced-rank AMF CFAR test is now examined for the case of unknown covariance. The

standard approach for radar detection when the noise covariance is unknown is to obtain an estimate
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from some L > KJ range gates in the ﬁeighborhood of the range gate currently being tested for
signal presence. The data in the range gate of interest is termed the primary data. The L nearby
range gates, which yield what is termed the secondary or auxillary data, are assumed to be target-
free. It is also possible to assume that only multiple snapshots of the same range gate are available.
The presentation of the material in this section follows similar derivations given previously for
full-rank detectors [26, 27, 24, 25, 28, 29, 30].

It is well known that the maximum likelihood estimate of the covariance matrix R is provided

by the sample covariance matrix ﬁ, ie.
5 _ 1 H
R = E n;n;’, (75)

where n; is the KJ X 1 vector of samples from the i-th nearby range gate. Define an auxillary

KJ x L data matrix A by

Alm, m, o owl, (79)

so that the sample covariance matrix R may be written in the form,

S
R = —L—AAH : (77)

Then the AMF CFAR test is expressed in terms of the sample covariance matrix as follows:

g2
ISHﬁ—1X‘2 LisH (AAH) X Ii1
Ags = o 1 = 1 < M- (78)
s"R~1s sH (AAH) s Hp
The data matrix A is expressed now in the form
A =RY/2X, (79)

where X is a KJ x L matrix of zero-mean, independent and identically distributed, complex

Gaussian variates with unit variance. Then an equivalent test to the sampled data AMF CFAR
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test in (78) is provided by

L

A,

s =

st (XXH>_IX ’

Hy
1 z Ure
sH (XXH) S

(80)
0

form is now applied to the auxillary data. The matrix T defined in (31) operates on the data
matrix X defined in (79). The transformed data matrix X has the form,

< D
X_TX—{B}’
where N = KJ —~ 1.

where D is the 1 X L beamformed data vector and B is the N x L noise subspace data matrix

The methodology used in the previous section for transforming the observed data into the GSC

(81)

The rank reducing N x M transform U, defined to be composed of those M eigenvectors of Ry

transformed reduced-rank sample covariance matrix as follows:

which maximize the cross-spectral metric given in (65), is applied next to form a (M +1) x (M +1)
H

N 1 of ger| 1 02 |7 | DDH pzH

o [1 S w3 8]

_| 5
zpH zzH f.a R, |’
where the reduced-rank M x L-dimensional auxillary data vector 2 is given by

Z =Uu"sB.
is given by

(83)

The optimal (M + 1) x 1-dimensional reduced-rank weight vector in these transformed coordinates

~ 1
Wgse = [ - ] )
T
filter depicted in Figure 4, namely

where the M x 1-dimensional vector W, is provided by the Wiener solution corresponding to the

(84)

#, = (227)7 2p" = R}

T.q4.

~

(85)
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The resulting output power is given by

P =62 - AR F,,. | (86)

The primary data is also transformed by R~Y/2 and T to obtain

x, = TR Y?x = [ ﬁ ] , (87)

and the reduced-rank M x 1-dimensional primary data vector is then given by
z, = UTD. (88)

The reduced-rank AMF CFAR test with an unknown covariance corresponding to the test in (78)

is expressed now in the form,

2
—wH H
Az, = 4wt _ el 21 n2 (89)
r A ~ Lo PN - 7 ’
s 0'3 - rZRzlrzd P, Hy 3

where the threshold 7, in (89) is related to the original threshold 7, in (78) by

oy = . (90)

Next the denominator of the reduced-rank sampled data AMF CFAR test in (89) is rewritten
in the form,
P, =D (1- 2"R;'2) D" = DCDY. (91)
The vector D is a 1 X L zero-mean, white Gaussian random vector. Therefore the distribution of
D can be denoted by
D — N,(0,1), (92)
where N.(0,1) is a joint Gaussian density of zero mean and covariance I, the L x L identity matrix.

Also it is easily shown by (83) that the matrix I — C, given by

(I-C)=z2"R'Z (93)
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is a projection matrix of rank M which projects vectors onto the reduced-rank ‘aulelary data noise
subspace. The matrix C is also an idempotent projection matrix of rank L—M, and the distribution
of P, is therefore central x? with L — M degrees of freedom [31, Theorem 1.4.2, p-27]. Thus the

distribution of P, is expressed by

a

P — X%—-M' (94)

The output of the reduced-rank GSC form array variate may be expressed next by
Yr = d— fﬁﬁ;lzp, (95)

which is conditionally complex Gaussian distributed when the quantities z, and Z are fixed. The

conditional covariance of y, is p~!, where p is given by

1

= — 96
1+ szz“lzp (96)

P

The parameter p is the well known RMB loss factor [4, 32, 25, 26] for the reduced-rank processor,

and it has a central Beta distribution which is given by

P (1 M

folp) =

, 97
B(M,L-M+1) (97)
where
(a— 1)1 (b-1)!
b) = .
Beh) = i o (99)
Hence the distribution of the reduced-rank AMF CFAR test is given by
. 2§
Nag (i Pul, 2) e p 5D 22, (99)
-m P
where § is the noncentrality parameter, given by
§ = p&,. (100)
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The parameter 7 is the ratio of two independent x? variables where the numerator is noncentral
x? distributed. Hence, under hypothesis Hy, v has a noncentral F distribution [31, Theorem 1.3.6,
p.24] given by

6—6

f'vlp,Hl (7) = ,5(1,[1 _ M) (1 + 7)L—M+

by
- 1,—— ). 101
11F1(L M+1’71+_Y) (0)

Therefore, the conditional distribution of the test Ay, given z, and Z under hypothesis H;, may
be expressed by

f (@) = — P F(L—M+11—6q—p>
Aag, 1o Hy q9)= ﬂ(l,L—M) (1+qp)L—-M+1 141 ’ ’1_|_qp '

(102)

The unconditional probability density function of the reduced-rank AMF CFAR test is then com-

puted as follows:
1
fAzsr |H1 (q) = [) fAst lp Hy (q) flel (P) dp’ (103)

which is expressible in the form,

_ 1 Lot - M bgp
fA2sr|H1(q)_ﬂ(l,L_M)ﬂ(M,L_M+1)A € (1-|—qp)L_M+1 lFl <L~M+1,171+qp) d/)’

(104)
where ¢ > 0. Finally by (104) for a fixed threshold 7, the probability of detection is computed to

be

Pp(n) = / o, 1 () dg, (105)
n
which when evaluated has the form

1 et pL—M (1 _ p)M—l
o B(L,L-M)B(M,L - M +

Pp(n) = 5 /JL(l — M1 B (L - M +1,1,8q) dg dp.

1+np

(106)
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The distribution of the reduced-rank AMF CFAR test under hypothesis Hy requires that the

variable é be set to zero, and (104) reduces to

1 1 pL—M+1 (1 - p)M—l

fAst IHo(Q) = ﬂ(l,L —_ M) ﬂ(M,L M+ 1) o (1 + qp)L‘M"‘l dp, (107)

which, for the selected threshold 7, yields a false alarm probability given by

e B 1 pL-M+1 (1 _ p\M-1
PF“‘(")_/n fAzsr'H"(q)dq"ﬂ(l,L—M)ﬁ(M,L—MH)/ / T+ %

(108)
Since the Pr4 is only a function of the threshold n and the integers L and M, all of which are held

fixed, the test Ay, has a constant false alarm rate.
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7 An Example of the Performance of Partially Adaptive Radar

A simulation is now considered which utilizes the parameters of the ARPA Mountain Top radar
in order to compare the performance of the reduced-rank detectors to that of the full-rank, joint
domain optimal detector. The AMF CFAR test with known covariance is utilized exclusively for
this example.

The Mountain Top radar employs the Radar Surveillance Technology Experimental Radar
(RSTER) and the Inverse Displaced Phase Center Array (IDPCA), co-located at the same site
[33]. It is assumed that the radar is in the RSTER-90 configuration and the receive-only mode.
The transmit frequency is 450 MHz. This radar consists of K =14 elements and J=16 pulses in
the PRI The elevation angle 8 is fixed (pre-beamformed), and the azimuth angle ¢ is the only free
parameter. The dimension of the adaptive processor is KJ = 224. The GSC processor beamforms
the target signal in one branch and, using a bloching matrix B, blocks the target signal from the
other branch. The noise subspace data vector is then of dimension N = KJ -1 = 223. The
corresponding full-rank GSC weight vector is also of dimension 223 x 1.

For the purposes of this analysis, three barrage jammers and land clutter compose the inter-
ference enviroment and one target signal is present. It is assumed that the radar platform is at a
height of 500 meters, and that the platform velocity is 500 meters per second. The target, which
is also at a height of 500 meters, has a range of 22 kilometers and an azimuth of —30°. The target
velocity is 250 meters per second. This target has a signal-to-noise ratio (SNR) ;)f 15 dB, represent-
ing a small, non-fluctuating, constant radar cross-section target. The three jammers have azimuth
angles of —60°, 30° and 60°, with jammer-to-noise ratios of 30 dB, 40 dB, and 30 dB, respectively.

The clutter-to-noise ratio is set to be 30 dB.
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The cross-spectral metric is now applied to the GSC and the detection performance is compared
to the principal component techniques such as PCI [13, 14], which has also been termed an eigen-
canceler [12, 15]. The performance of the fully adaptive GSC, the partially adaptive eigen-subspace
GSC, and the partially adaptive cross-spectral subspace GSC processors are evaluated.

To obtain the performance of the subspace selection techniques, let the dimension of the adaptive
processor be reduced from N = 223 weights to M = 50. The dimension of the noise subspace
eigenstructure is calculated to be approximately 70. This is the lower bound for the standard rank
reduction techniques [9, 10, 11]. The power spectrum of the data, averaged over 500 snapshots,
is presented in Figure 7, from which it is evident that the target signal is not discernible. Figure
8 presents the gain of the full-tank spatio-temporal Wiener filter, from which it is seen that the
optimal space-time weight vector of dimension 993 is capable of attenuating all jammers and clutter
while passing the target signal. The full-rank Wiener filter SINR is 38.28 dB. Figure 9 depicts the
spatio-temporal gain of the rank 50 eigen-subspace Wiener filter. The clutter and most of the power
froﬁ the three jammers is péssed with relatively high gain; there is little attenuation of the noise.

The output SINR for the eigen-subspace Wiener filter is 25.98 dB, reflecting a loss of 12.3
dB. The spatio-temporal gain of the rank 50 cross-spectral subspace Wiener filter is depicted in
Figure 10. It can be seen that by simply selecting a different set of 50 eigenvectors, the resulting
array response closely approximates the full-rank optimal STAP matched filter and the clutter and
jammers are attenuated. The resulting output SINR is 28.03 dB,.reﬂecting a loss of only 0.25 dB

in reducing the rank from 223 to 50.
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Figure 7: The power spectrum of the data.
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Figure 8: The full-rank Wiener filter.
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Figure 9: The reduced-rank eigen-subspace Wiener filter.
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Figure 10: The reduced-rank cross-spectral subspace Wiener filter.
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Figure 11: The output SINR of the reduced-rank processors as a function of the rank of the data.
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The performance of these two reduced-rank processors may also be evaluated by plotting the
output SINR as a function of Wiener filter rank. The SINR for the eigen-subspace and cross-
spectral subspace reduced-rank processors are compared to the full-rank SINR in Figure 11 as the
rank increases from 1 to 223. It can be seen from this figure that the eigen-subspace processor
converges to the optimal SINR in an abrupt manner, thereby obtaining the optimal value only
once the Wiener filter rank reaches the dimension of the noise subspace eigenstructure. This is
characteristic of the eigen-subspace techniques in nearly all of its applications ‘since the principal
components method does not yield an optimal filter as a function of rank. By contrast the cross-
spectral metric depicts an exponential-like convergence to the optimal SINR.

The above simulation shows that the reduced-rank Wiener filter in the cross-spectral subspace
outperforms the Wiener filter in the eigen-subspace for all filter ranks less than the dimension
of the noise Subspace eigenstructure. It is verified in Figure 11 that the cross-spectral metric
provides an upper-bound to the SINR performance achievable by a reduction of the number of
eigenvectors of the array covariance matrix. Finally, note for the Mountain Top radar example that
the reduction of the rank to 50 weights can be interpreted as an error in estimating the dimension of
the noise subspace eigenstructure. It is clear from Figure 11 that the penalty in SINR performance
for underestimating the rank of the noise subspace eigenstructure is greatly reduced in the cross-
spectral approach to rank reduction. This robustness property is paramount for reduced-rank
detection in unknown noise environments.

Next the probability of false alarm for each test is set to Pr4 = 107, The detection probabilities
are calculated for the full-rank test (223 adaptive weights) and for the two reduced-rank tests (50
adaptive weights) in the eigen-subspace and the cross-spectral subspace. The resulting plots of

Pp versus the normalized output SINR are presented in Figure 12. The normalized SINR is
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Figure 12: The AMF probability of detection versus normalized output SINR.

calculated by dividing the output SINR of each reduced-rank detector by the output SINR of
the full-rank detector. It is seen that the full-rank AMF detector and the rank 50 cross-spectral
AMF detector demonstrate vefy similar performance. By comparison, the rank 50 eigen-subspace
detector performs quite poorly. Recall that a target input SNR of 15 dB is used in the graphical
examples presented earlier in this section. The full-rank and cross-spectral AMF detectors both
yield a detection probability nearly equal to unity for this target. The eigen-subspace detector,
however, yields a Pp near zero for this same scenario. The rank 50 cross-spectral subspace detector
yields a 12 dB improvement in detection sensitivity over the rank 50 eigen-subspace detector. This
corresponds to the estimated 12 dB gain of the cross-spectral subspace processor over the SINR

obtainable by the eigen-subspace processor at rank 50 as it is depicted in Figure 11.
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8 Conclusions

In this report a general methodology is introduced in order to describe reduced-rank detectors
and to analyze their statistical properties and performance. Although the AMF CFAR test is
emphasized in this report, the analysis technique developed herein may be extended readily to
nearly any other test by simply relating the variables which compose the test to the GSC. For
example, the generalized likelihood ratio test (GLRT) [23], now denoted As, results in another

CFAR test which takes the form

- H
14+ xR 1x 2 1
A3 = |SHR_1X|2 = 1-{- |y|H - z 3. (109)
1 4 xAR-1x — BER-IxE P(1+bHR;'b) H,
For this case the reduced-rank GLRT is expressed in the form,
2 Hl
Uy
A37‘ =1+ J'P_l z 735 (110)
™ Hp

where the term v, = ,/py, and p is the reduced-rank RMB loss factor in (96).

The computational complexity requirements of the eigendecomposition performed for subspace
selection suggest that other procedures need to be discussed. It is noted that other unitary operators
U may be used with the cross-spectral metric to determine the transformation U, to yield new
reduced-rank tests which may approximately exhibit the optimal performance obtained herein. The

‘ Gram-Schmidt procedure is one example of a lower-complexity transformation which can result in
excellent performance with the cross-spectral metric. Another example is the approximation of the
cross-spectral metric which uses a unitary operator that does not completely decorrelate the noise
subspace covariance matrix. This technique is used in [19], where the DCT matrix was used in
order to reduce the computational complexity.

Finally, it is possible to form new detectors by incorporating other constraints in conjuction

with the STAP detection linear constraint. Examples of this include derivative constraints [34] and
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other additional linear constraints which take advantage of any available a priori knowledge of the
interference environment [35, 36]. Fixed transformations of the data prior to adaptive filtering also
belong to this category and the popular element-space pre-Doppler and post-Doppler algorithms,

as well as their beamspace analogies, may be formulated in the context provided by this report.
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Appendix: Algorithms for Finding an Orthonormal Signal Block-
ing Matrix B

In this appendix, two simple algorithms are described to determine an orthonormal signal blocking
matrix B given the normalized N x 1 dimensional steering vector s. The first algorithm is more
accurate and utilizes the singular value decomposition (SVD). The second algorithm is faster, and
uses the QR decomposition. Both of these algorithms are derived and explained in detail in many

linear and numerical algebra texts, such as [37].

Algorithm 1

[U,S, V] =svd(s?)
B=V(,2:N)

Algorithm 2

[Q,R] = qr(s)
B=Qf(;2:N)

In many cases, a non-orthonormal signal blocking matrix may be easily constructed and the
Gram-Schmidt proceedure can be implemented to provide the orthonormalization. One example
of this is a system which utilizes a primary space-time steering vector to set the array manifold in
angle and Doppler. The normalized steering vector s is then fixed to point broadside with respect
to the array. The noﬁ—orthonormal signal blocking matrix, under these conditions, is implemented
by simply taking the difference of the appropriate input signals. This is identical to the array

configuration presented in [2] for narrowband arrays.
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